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ABSTRACT
The segmentation of bones in computed tomography (CT) im-
ages is an important step for the simulation of forearm bone
motion, since it allows to include patient specific anatomy in a
kinematic model. While the identification of the bone diaph-
ysis is straightforward, the segmentation of bone joints with
weak, thin, and diffusive boundaries is still a challenge. We
propose a graph cut segmentation approach that is particu-
larly suited to robustly segment joints in 3-d CT images. We
incorporate knowledge about intensity, bone shape and local
structures into a novel energy function. Our presented frame-
work performs a simultaneous segmentation of both forearm
bones without any user interaction.

Index Terms— forearm, segmentation, bone, graph cut

1. INTRODUCTION

Treatment goals in the care of forearm fractures are bone heal-
ing and restoration of function. Bone union of the forearm
shaft in an incorrect anatomic position impairs the rotation of
the forearm (i.e. pronation and supination). This may result in
reduced range of motion, pain, and instability during forearm
rotation. For individual planning of a corrective osteotomy a
method to obtain the shape of the bone is needed, in order to
simulate the pathological forearm kinematics. Therefore, an
accurate and robust segmentation of both forearm bones (ra-
dius and ulna) in 3-d computed tomography (CT) datasets is
required.
In general, long bone segmentation is a straightforward task
since cortical bone, which is dense and compact, forms the
bone surface. Due to its high density a bone shaft appears
very bright in a CT image. The spongy interior layer, the
cancellous bone, is much less dense. Joints have to be more
flexible and therefore they mainly consist of cancellous bone.
Thus, contrast between joints and the surrounding tissue in an
image is much less pronounced. This is in particular the case
for elderly patients whose bone density is decreased. In ad-
dition to weak joint boundaries, the articular spaces between
radius, ulna and carpal bones are extremely narrow. This re-
sults in diffuse boundaries between the joint components that
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appear as being in direct contact in the CT image due to par-
tial volume effects. Since the forearm joints have a crucial
influence on the kinematics, an algorithm is required that can
accurately segment the bone joints under these conditions.
We therefore propose a framework that performs an auto-
matic segmentation of both forearm bones, using graph cut
optimization. Particular attention is paid to the segmentation
of the distal and proximal radio-ulnar articulation which is a
challenging task. As a key contribution we introduce novel
energy functions for segmentation of sheet-like objects with
weak boundaries. We also tackle the problem of differentiat-
ing objects with extremely small inter-object spacing.
Several methods have been proposed to segment bones and
joints from CT images. Sebastian et al. [1] use a skeletally
coupled deformable model for the segmentation of carpal joints.
The problems of joint segmentation are discussed in detail.
An excellent overview and comparison of well-known seg-
mentation methods like tresholding, region growing, region
competition, watershed, and deformable models is also given.
Westin et al. [2] and Descoteaux et al. [3] use local structure
tensors for bone enhancement. Our paper also incorporates
this measure in the segmentation algorithm.
Neubauer et al. [4] use thresholding, followed by a manually
initialized watershed algorithm to segment radius, ulna, and
carpus for a virtual corrective osteotomy application. Hahn [5]
also proposes an interactive watershed transform for bone seg-
mentation. In both approaches user-interaction is necessary
for a successful segmentation.
A growing number of image segmentation approaches use en-
ergy minimization techniques. Snel et al. propose a 3-d active
contour model for the detection of carpal bones [6]. The seg-
mentation result depends on the quality of an initial contour,
which is hard to obtain automatically.
Level sets and graph cuts are global optimization techniques
to minimize energy functions. A 3-d active contour approach
using level sets for the segmentation of anatomical structures
was proposed by Zushkevich et al. [7]. Boykov and Jolly [8]
introduced a technique that uses graph cuts for interactive
segmentation of N -dimensional images. This basic strategy
was extended subsequently by different groups. An excel-
lent overview of recently published approaches is given by
Boykov and Funka-Lea [9].
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2. METHODOLOGY

The key idea of the segmentation framework is that the al-
gorithm identifies the radius and the ulna in a slice by slice
fashion in axial direction, starting from an initial slice. This
allows for incorporating prior-knowledge, gained from previ-
ously segmented slices, into the segmentation process. A pos-
itive side-effect is that the area, where the graph cut has to be
applied, can be narrowed down to a smaller image patch since
the extent of each bone in the previously segmented slice is
known.
At first, the start slice has to be chosen and an initial label-
ing of the bones of interest in it has to be provided since no
prior knowledge is available. The center slice of the dataset
is a good choice as a starting point because the bone density
is strongest in the middle part of the bones. For this, it is as-
sumed that the imaged anatomy corresponds to the forearm.
The initial segmentation of radius and ulna is achieved by
thresholding (threshold of 400 HU), followed by a connected
component labeling algorithm, where the two largest compo-
nents are choosen. Starting from the center slice, radius and
ulna are simultaneously segmented by applying the slice-wise
segmentation, described in Section 2.1, in both z-directions.
The segmentation of a bone is terminated, when the number
of segmented voxels for this component falls below a certain
threshold (i.e. 20 voxels) in the currently processed slice.

2.1. Slice-wise segmentation

At first the image patches, where the actual segmentation is
applied, are determined for the current slice. To this end the
bounding rectangles of radius and ulna are calculated based
on the segmentation result of the previous slice. The new
patches are obtained by enlarging each bounding rectangle
by a factor δ, which must be large enough to cover the size
change of the bone between two slices. We set δ to two times
the slice-spacing.
In each patch P the encompassed bone has to be segmented,
that is we want to find the optimal labeling l that assigns a
voxel v ∈ P either label ”object” or ”background” and mini-
mizes the standard energy function [10]

E(f) =
�
v∈P

Dv(lv) +
�

v,w∈N:lv �=lw

Vv,w(lv, lw), (1)

where N is the set of pairs of adjacent voxel. Dv(lv) is the
data cost function that measures the costs for assigning voxel
v to label lv. Vv,w(lv, lw) measures the costs for assigning
voxel v to label lv and neighbor w to lw (smoothness costs).
Polynomial time algorithms exist which minimize Equation 1
by calculating a minimum cut across a graph [10, 11]. In the
following sections we describe how the graph is constructed
and introduce appropriate data and smoothness cost functions
that are used to segment the bones.

2.1.1. Graph cut background

A graph G(V, E) of an image is constructed by associating
the image voxels to the nodes of V and connecting neighbor-
ing voxels with edges contained in E. In this graph-based
segmentation approach two additional nodes are contained in
V called terminals. The terminals correspond to labels which
can be assigned to voxels. In order to assign a certain label
to voxels, not only edges between two voxels (n-links) are in-
cluded in E, but also edges which connect the voxels to the
two terminals (t-links). The weight of a t-link, connecting
a voxel v and a terminal, indicate the costs for assigning the
voxel to this label. n-link weights represent spatial relation
between neighboring voxel. In terms of energy minimization,
weights assigned to t-links and n-links reflect the parameters
in the data cost and smoothness cost terms of the energy func-
tion in Equation 1. The minimum cost cut then represents a
labeling which optimizes this energy function.

2.1.2. Data cost function

Typically intensity distributions, often based on manually po-
sitioned seeds, are used to set up the data costs for the re-
maining voxels. This is hardly possible in our case, since the
intensities of both bone and soft tissue vary significantly de-
pendent on their position. Therefore, we have developed an
accurate estimation of the intensity values of bone and tissue
which also encodes spatial information.
Intensity changes between two slices are relatively small in a
local neighborhood, since the shape of radius and ulna varies
slowly in axial direction. Based on this observation, a 2-d
intensity map Ψb is generated in order to predict the bone in-
tensities on the next slice. To this end, a mean intensity is
calculated for each bone-labeled voxel of the previously seg-
mented slice by averaging the intensity value of each bone-
labeled voxel in a certain neighborhood (i.e. 5×5). The mean
values are stored in a map according to the 2-d positions of
the corresponding voxels. A modified distance transform is
then applied to the map. Instead of storing a distance at each
map position, the mean intensity of the nearest bone-labeled
voxel is stored. In the same manner an intensity map Ψt for
soft tissue, which surrounds the segmented bone, is gener-
ated. Using the proposed intensity maps, intensity estimates
of the nearest bone- or tissue-labeled voxel can be extracted
in constant time.
A labeling only based on intensity maps is unstable when in-
tensity differences between soft tissue and bone are too small
to make a clear differentiation. In order to gain more robust-
ness, the intensity measure is combined with a sheetness mea-
sure that enhances bone structures [3]. The sheetness of a
voxel v is defined as

S(v) =

�
0 if λ3 > 0,

(exp
�
−R2

s

2α2

�
)(1− exp

�
−R2

b

2β2

�
)(1− exp

�
−R2

n

2c2

�
)

,

where α, β, and c are set respectively to 0.5, 0.5 and half the
maximum Frobenius norm of the structure tensor [3]. The
ratios Rs = |λ2|/|λ3|, Rb = |(2|λ3| − |λ2| − |λ1|)|/|λ3|,
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Rn =
√

λ2

1
+ λ2

2
+ λ2

3
are defined by the eigenvalues λ1,λ2,

and λ3 (sorted in ascending order) of the structure tensor at v.
Finally, the total data costs for a voxel v with intensity Iv are

Dv(f) =

��
�
�
|Iv−Ψb(v)|

σ

�β

(1− S(v))1−β , if f = bone�
|Iv−Ψt(v)|

σ

�β

S(v)1−β , if f = tissue
,

where Ψb(v) and Ψt(v) are the intensity maps for bone and
tissue. S(v) is the normalized sheetness function and σ is a
normalization factor for the intensity term which was set to
|Ψb(v) − Ψt(v)|. A β-value of 0.8 was used in all experi-
ments.

2.1.3. Smoothness cost function

Smoothness cost are used to define spatial coherence which is
done by penalizing discontinuities between adjacent voxels.
A cost function only based on intensity differences caused
leakage in our experiments due to the presence of fuzzy edges.
We therefore propose to incorporate the sheetness of neigh-
boring voxels in the smoothness function. For two adjacent
voxels v and w, where v is labeled as bone and w as tissue
(lv �= lw), |S(v)− S(w)| is typically high at the bone bound-
ary. In order to favor cuts near the boundary, the smoothness
cost has to be small if |S(v)− S(w)| is high.
Additionally, the shape of the bone is incorporated into the
smoothness term. As proposed in [12], we use a shape prior
based on a level-set template. The boundary of the segmented
bone of the previous slice defines this template. Let Φ(v) be a
function that returns the distance of v to the template bound-
ary. Then Φ((v + w)/2) is small when both voxels v, w lie
near the template boundary, as desired. Combining both mea-
sures, the smoothness costs for voxels v and w are defined
as

Vv,w(lv, lw) = α (1.0 − |S(v) − S(w)|)β Φ
�

v + w

2

�1−β

, (2)

where both functions S(v) and Φ(v) are normalized. α and β
were set to 0.75 and 0.5 in all our experiments.

2.1.4. Direct contact

The articular space between radius and ulna is extremely nar-
row which appears as direct contact in the CT images (see
Figure 3). It would require a strong increase of the smooth-
ness cost in order to prevent leakage in this area. On the other
hand, this leads to incorrect segmentation results at weak,
thin boundaries. Our graph cut algorithm is therefore applied
without stronger boundary constraints. Potential leakage be-
tween radius and ulna is corrected in a separate step using an
alternative data cost function.
All voxels that are labeled as object in one image patch but ac-
tually belong to the bone in the other image patch should be
labeled as background (and vice versa). Therefore a criterion
has to be found which measures whether a voxel belongs to
the radius or the ulna. Intensity differences in the contact area
of the two bones were not significant enough in our datasets.
A better measure was to compare the distances of a voxel to

the boundaries of radius and ulna in the previous slice. We
achieved best results by using the mean distance Φ(v) to the
boundary in an 8-neighborhood around voxel v.
The new data cost function only considers voxels which are
in the intersection v ∈ Pr ∩ Pu of the two image patches of
radius and ulna, the labeling of remaining voxels is not mod-
ified and used as hard constraints. The data cost function for
Pr and respectively Pu is defined as follows

Dv(f) =

�
Φr(v) , if f = bone

Φu(v) , if f = tissue
,

where Φr and Φu are the mean distances to the boundaries of
radius and ulna. After setting the data and smoothness costs
(now using Equation 2 with α = 0.25, β = 0.0) the graph
cuts are updated in both image patches yielding the final seg-
mentation of radius and ulna.

Fig. 1. Surface models of segmented radius and ulna.

3. RESULTS

In order to evaluate the proposed algorithm, we tested it on
cadaver forearms in different pro- and supination positions,
overall on 19 CT datasets. The inter-bone distance varies dur-
ing forearm movement and therefore the algorithm must be
capable of segmenting forearms in different poses. A com-
mercial CT scanner (Philips Brilliance 40) was used for data
acquisition. The in-plane resolution of all datasets was 0.29×
0.29 mm (512×512 pixel). The number of slices ranged from
803 to 874, with a slice-thikness/slice-spacing of 0.67/0.33 mm.
For all scans, the forearms were aligned with their longitudi-
nal axis parallel to the scanner’s z-axis.
Radius and ulna were successfully segmented without any
user interaction in all experiments. Figure 1 shows a 3-d re-
sult of the segmented forearm bones. The algorithm processes
8 slices per second (Pentium 4, 3.2 GHz), resulting in an av-
erage runtime of 103 ± 5.4 s (24 s graph cut, 60 s sheetness
measure, 19 s distance- and intensity maps). In order to eval-
uate the accuracy of the segmentation, we compared the outer
bone boundaries with results of a manual segmentation. The
average mean distance error was 0.22 mm, and the average of
the maximum distance in the 19 datasets was 1.9 mm.
We also compared our algorithm with three other techniques
in order to show its strengths: a 3-d active contour method
using level sets [7], an interactive watershed transform [5],
and a standard graph cut approach with intensity based energy
functions [8]. Figure 2 shows that our algorithm is clearly
superior in detecting weak bone boundaries. Another benefit

79



is that our method is capable of segmenting the radio-ulnar
joints without leakage. The tested watershed algorithm was
also able to segment bones with fuzzy edges without leakage
(by manually setting markers). However, neither the active
contour method nor the standard graph cut approach (penal-
izing intensity differences) was able to individually segment
the bones without leakage in any dataset (see Figure 3).

4. CONCLUSION AND FUTURE WORK

We have presented a fully automatic segmentation framework
for the forearm bones radius and ulna. The main contribution
is the introduction of appropriate energy functions that are
particularly suited for joint segmentation with weak or fuzzy
edges. Additionally, the proposed smoothness term of the en-
ergy functions allows a segmentation of joints with narrow
inter-bone spacing. The energy functions are minimized us-
ing a graph cut approach yielding an optimal solution.
Currently, the algorithm requires CT datasets with thin and
dense slices since the articular spaces between both forearm
bones and the carpal bone is extremely narrow. The extension
of the method, capable to handle axial resolutions up to 1 mm,
is planned as future work.

(a) (b) (c)

(d) (e)

Fig. 2. Segmentation of the radio-ulnar joint with weak
boundary. The identified outer bone contour is shown in
white. (a) unsegmented patch, (b) watershed segmentation
(manual thresholding of the original data masked by the wa-
tershed basin), (c) active contour segmentation, (d) graph cut
using histogram-based probability, (e) our approach.

5. REFERENCES

[1] T. B. Sebastian, H. Tek, J. J. Crisco, S. W. Wolfe, and
B. B. Kimia, “Segmentation of carpal bones from 3d CT
images using skeletally coupled deformable models,” in
MICCAI. 1998, pp. 1184–1194, Springer.

[2] C. F. Westin, S. K. Warfield, A. Bhalerao, L. Mui, J. A.
Richolt, and R. Kikinis, “Tensor controlled local struc-
ture enhancement of CT images for bone segmentation,”
in MICCAI. 1998, pp. 1205–1212, Springer.

(a) (b) (c) (d)

Fig. 3. Joints with narrow inter-bone spacing. The result-
ing outer bone boundary is shown in white. (a) unsegmented
patch, (b) active contour segmentation, (c) graph cut penaliz-
ing intensity differences, (d) our approach.

[3] M. Descoteaux, M. Audette, K. Chinzei, and K. Siddiqi,
“Bone enhancement filtering: Application to sinus bone
segmentation and simulation of pituitary gland surgery,”
Computer Aided Surgery, vol. 11, pp. 247–255, 2006.

[4] A. Neubauer, S. Wolfsberger, M. T. Forster, L. Mroz,
R. Wegenkittl, and K. Bühler, “Virtual corrective os-
teotomy,” in Computer Assisted Radiology and Surgery,
2005, vol. 1281, pp. 684–489.

[5] H. K. Hahn, Morphological Volumetry : Theory, Con-
cepts, and Application to Quantitative Medical Imaging,
Ph.D. thesis, University of Bremen, 2005.

[6] J. G. Snel, H. W. Venema, and C. A. Grimbergen, “De-
formable triangular surfaces using fast 1-d radial la-
grangian dynamics-segmentation of 3-D MR and CT
images of the wrist,” IEEE Trans Medical Imaging, vol.
21, pp. 888–903, 2002.

[7] P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith,
S. Ho, J. C. Gee, and G. Gerig, “User-guided 3D active
contour segmentation of anatomical structures: signif-
icantly improved efficiency and reliability.,” Neuroim-
age, vol. 31, pp. 1116–1128, 2006.

[8] Y. Boykov and M. P. Jolly, “Interactive graph cuts for
optimal boundary & region segmentation of objects in
N-D images,” in ICCV, 2001, vol. 1, pp. 105–112.

[9] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient
N-D image segmentation,” Int. J. Comput. Vision, vol.
70, pp. 109–131, 2006.

[10] V. Kolmogorov and R. Zabih, “What energy functions
can be minimized via graph cuts?,” IEEE PAMI, vol. 26,
pp. 147–159, 2004.

[11] Y. Boykov and V. Kolmogorov, “An experimental com-
parison of min-cut/max-flow algorithms for energy min-
imization in vision.,” IEEE PAMI, vol. 26, pp. 1124–
1137, 2004.

[12] D. Freedman and T. Zhang, “Interactive graph cut based
segmentation with shape priors,” in CVPR, 2005, vol. 1,
pp. 755–762.

80


